

4 Blätter

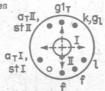
FUNKWERK - Sammlung, Gruppe Röhrentechnik

Allgemeines:

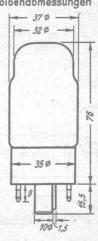
Blatt 1

Abstimmanzeigeröhre mit zwei Anzeigebereichen in Glaskolben mit Stahlröhrensockel. Enthätt außer dem vierwinkligen Anzeigesystem noch zwei Triodensysteme mit gemeinsamem Steuergitter, die zur Verstärkung der Steuerspannung dienen, zur gesonderten NF-Verstärkung aber nicht verwendbarsind. Die Anoden-Haltestege, die bei den beiden Systemen um 90° versetzt sind, ragen in das Anzeigesystem hinein und steuern die Anzeige. Das untere Triodensystem hat einen kleinen Durchgriff und infolgedessen einen großen Verstärkungsfaktor, und dient zur Anzeige schwacher Sender (Anzeigebereich I). Das obere Triodensystem hat einen größeren Durchgriff und einen kleineren Verstärkungsfaktor, und dient zur Anzeige stärkerer Sender und des Ortssenders (Anzeigebereich II). Das Leuchtsystem enthält ein Anzeigegitter, das im Innern der Röhre an Katode liegt. Hierdurch wird ein zu starkes Ansteigen des Leuchtschirmstromes und damit ein zu schneller Verschleiß der Leuchtschirmpaste verhütet. Eine Steuerung des Anzeigesystems durch das Anzeigegitter ist bei der EM 11 also nicht möglich. Die Steuerspannung nimmt man am besten von der (unverzögerten) Empfangsgleichrichterdiode ab, damit auch schwache Sender gut angezeigt werden. Die Anodenspannung kann man über hohe Außenwiderstände ($R_{al}=1\cdots3$ M Ω , $R_{all}=0.5\cdots2$ M Ω) direkt an die Betriebsspannung anschließen (siehe Betriebsfall a) und Schaltung des 7 Kreis - 4 Röhren - Super bei der ECL 11). Man kann aber auch all über einen Außenwiderstand an die Betriebsspannung und all über einen Vorwiderstand an die gleitende Schirmgittersponnung der Hf-Röhren (ECH 11 + EBF 11) anschlie-Ben (siehe Betriebsfall b) und Schaltung des Spitzensuper bei der EF 11). Da diese Röhren verzögert geregelt werden, und somit die Schirmgitterspannung erst nach Überschreiten der Verzögerungsspannung beginnt hochzugleiten, tritt auch in der Anzeige des Bereiches II eine Verzögerung ein, und man erreicht, daß bei schwachen Sendern nur die Leuchtsektoren des Bereiches I schließen, und die Leuchtsektoren des Bereiches II bei schwachen Sendern unbeeinflußt bleiben.

Die Katode der EM11 verbindet man zweckmäßig direkt mit der Katode der EBF11 bzw. der Diode (siehe Schaltung des Spitzensuper bei der EF11). Sind die Anfangs-Schattenwinkel verhältnismäßig klein, so kann man ein Breiterwerden derselben dadurch erreichen, daß man die Katode der EM 11 direkt an Erde bzw. Masse legt (siehe Schaltung des 7Kreis - 4Röhren - Super bei der ECL 11). Dadurch liegt die Verzögerungsspannung der Diode mit der Anlaufspannung der EM 11 in Reihe – aber mit entgegengesetztem Potential – und bewirkt eine wesentliche Herabsetzung der negativen Vorspannung und damit eine Vergrößerung der Anfangs - Schatterwinkel. Verwendet man auch bei der EM11 einen Katodenwiderstand, so erzielt man ein rascheres Schließen der Leuchtwinkel.


Um eine scharfe, nicht flackernde Anzeige zu erhalten, muß die EM11 durch eine Gleichspannung gesteuert werden. Die starken Pulsationen der Regelspannung müssen deshalb durch ein Siebglied mit richtig bemessener Zeitkonstante geglättet werden. Bei flackernder Anzeige ist die Zeitkonstante zu klein, bei ziehender, gummiartiger

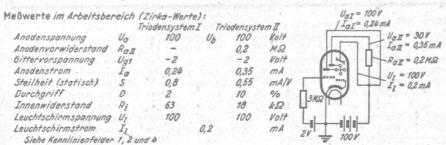
Anzeige zu groß.


Verbindet man beide Anoden der Triodensysteme miteinander und legt sie dann über einen gemeinsamen Vorwiderstand (RaI+II = 1...3 M.Q.) an die Betriebs spannung, so erhält man eine Einbereichsanzeige. Die beiden Triodensysteme sind damit parallel geschaltet und wirken wie ein System mit veränderlichem Durchgriff (siehe Kennlinienfeld 3).

Die EM11 kann nicht nur als Anzeigeröhre in Rundfunkgeräten verwendet werden, sondern dient auch in steigendem Maße zur Anzeige in Brückenschal-

Sockel von unten gesehen

Lage der Schattenwinkel: I. Mitte des Schattenwinkels BI für den Bereich I Il Mitte des Schattenwinkels \$II für den Bereich II Kolbenabmessungen



E M 11 tungen und sonstigen Meßschaltungen an Stelle von Meßinstrumenten. Man kann sie sogar als Spannungsmesser verwenden.

Will man, daß die Schattenwinkel des Bereiches I zur Anzeige schwacher Sender waagerecht liegen, so ordnet man den Sockel so an, daß der Führungsstutzen nach unten zeigt.

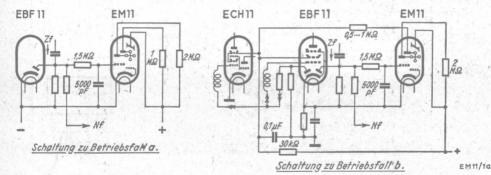
Heizung

Heizspannung	Uf	6,3	Volt~=
Heizstrom	If	200	 mA ind

Betriebswerte:

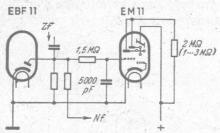
Betriebsspannung	Ub 1)		- 2	250	11.19	100	- 2	00			1	00		Volt
Leuchtschirmspannung	Uz		2	250		-17	2	00	40	4 .	1	00		Volt
Leuchtschirmstrom	I,		0,46	1,1		100	0,3.	0,8			0,1	. 0,3	5	mA
	System		I	1		37	I		11		I	100	I	
Anodenvorwiderstand				art.		0.00	-	100	1127		3.89	1		
(AuBenwiderstand)	Ro		2	100	1	T	2	M 4	1	1133	2		1	MS
Gittervorspannung	Ugt	0	-4.	0	-20	0	-3	0	-20	0	-2	0	-10	Volt
Anodenstrom	In	0,12	0.07	0,25	0,08	0,1	0,06	0,2	0,06	0,05	0,03	0,9	0,03	mA
Schattenwinkel	B	750	150	830	50	750	180	82º	30	750	150	800	30	- 50

b. R_{RT} and in gleitende Schirmgitterspannung von ECH11 + EBF11 ($R_{R2+4} = 30 k\Omega$) angeschlossen.

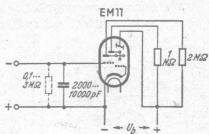

Betriebsspannung	Ub 1)		250	1.1	7.57	250	1	3	250		10	250		Volt
Leuchtschirmspannung	UZ		250	200		250	11		250		1.1	250		Volt
Anodenvorwiderstand	ROIL		0,5	4		0,5	- 1		0,5			1		MSZ
Verzögerungsspannung	Uv		0	1 6		-2			-4		30.0	-4		Volt
Gittervorspannung	Ugi	0	-4	-20	0	-4	-20	0	-4	-20	0	-4	-20	Volt
(Anodenspannung	Va	18	48	171	18	47	170	18	42	169	12	37	158	Volt)
Anodenstrom	In	0,17	0,195	0,11	0,17	0,17	0,11	0,17	0,11	0,10	0,09	0,06	0,06	mA
Schattenwinkel	BI	80°	60°	60	80°	610	6,50	800	650	70	830	68°	90	

Die Werte für den Bereich I sind die gleichen wie im Betriebsfall a.

Durch den Mitzieheffekt ist der Schattenwinkel bei Ug1 = 0 Volt in der Praxis etwa 10% kleinerals angegeben.


Siehe Kennlinienfelder 1, 2, 4 und 5.

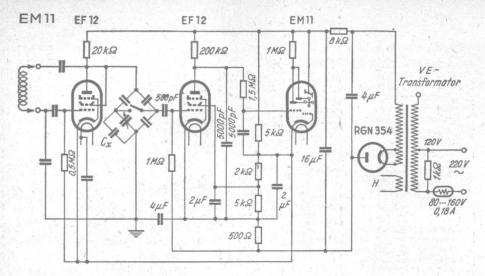
¹⁾ Ub = Spannung an Röhre + Spannungsabfall am Anodenvorwiderstand.



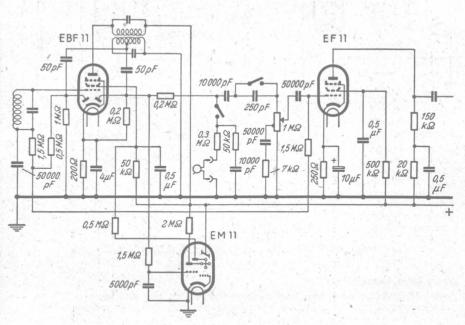
Betriebswerte (Fortsetzung):								EMII
c. Einbereichsanzeige (Zii	rka - Werte)							Blatt 2
Betriebsspannung U	311	250		1	200	10	Volt	
Leuchtschirmspannung U		. 2	250		200	1	00	Volt
Anodenvorwiderstand R	d		2		2		2	MS
Gittervorspannung U	gf .	-1	-20	-1	-20	-1	-10	Volt
(Anodenspannung U	7	20	1.42	17	138	12	80	Volt)
Anodenstrom 1	a	0,12	0,055	0,09	0,04	0,044	0,012	mA
Schattenwinkel β Siehe Kennlinienfelder 3 und		860	10°	840	50	770	50	
d. als Spannungsmesser (Gi	eichspannu	nasvoli	tmeter)					
	51)	250			200	1	100	Volt
Leuchtschirmspannung U		250	- 1		200		100	Volt
Anodenvorwiderstand R	oI.	2			2		. 2	MS
R	η <u>π</u>	1		24-	1		1	MS
MeBbereich (ausnutzbarer								
Steuerbereich) Ug Empfindlichkeit (erforder- liche Steuerspannung Val pro	7 = 0	3,5 -2	2,520	03	-218	02	-110	Volt
Grad Winkeländerung)	60		200	35	125	25	80	mV

¹⁾ Ub = Spannung an Röhre + Spannungsabfall am Anadenvorwiderstand

Schaltung zu Betriebsfall c.

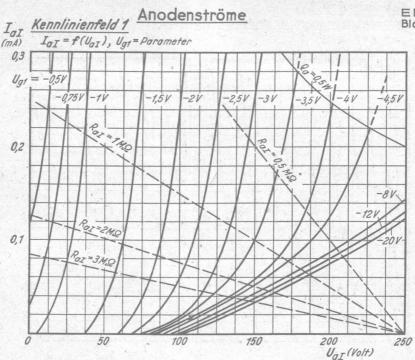

Schaltung zu Betriebsfall d.

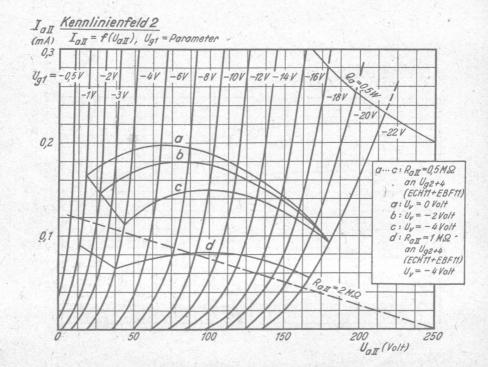
Grenzwerte:	7.	riodensystem I	Triodensystem II	
Anodenspannung Anodenkaltspannung Anodenbelastung	Va max Val max Qa max	300 550 0,5	300 550 0,5	Volt Volt Watt Volt
Leuchtschirmspannung Leuchtschirmkaltspannung Katodenstrom Gitterableitwiderstand	Ul min u. max Ul L max Ik max Ral max	5: 5:		Volt mA MS2
Spannung zwischen Faden und Schie (Katode) Gitterstrom - Einsatzpunkt: bei I	Cht Uf/k max		00 -1,3 Volt	Volt


Innere Röhrenkapazitäten:

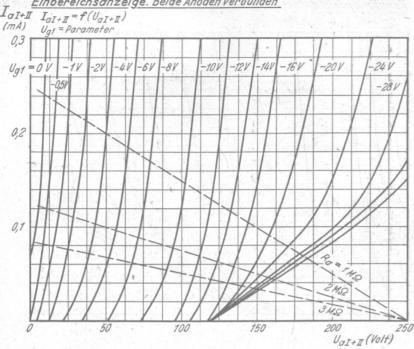
Da die EM11 nicht zur Verstärkung, sondern nur zur Anzeige dient, sind die inneren Röhrenkapazitäten uninteressont und werden von den Röhrenfabriken nicht angegeben.

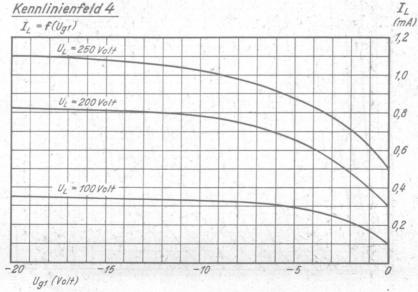
Fritz Kunze

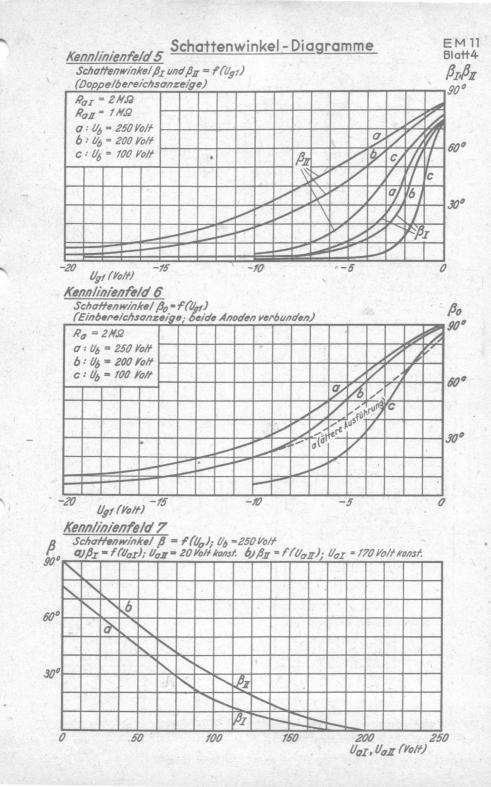


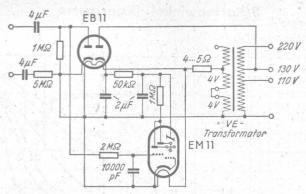

Zweistufiges Röhrenvoltmeter mit Gleichstromrückkopplung und Doppelspannungsteiler zur Messung von kleinen Kapazitäten. Als Indikator dient eine EM 11.

Schaltung EBF11 - EM11 - EF11

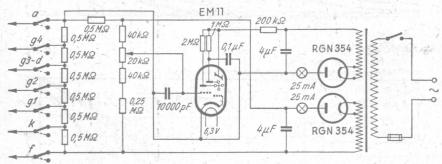


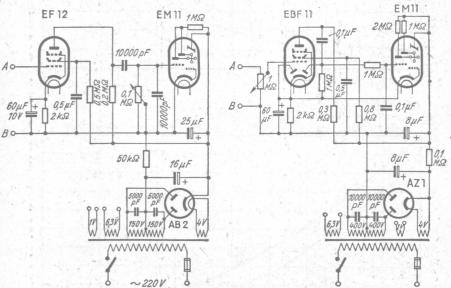





EM11 Kennlinienfeld 3

Einbereichsanzeige. Beide Anoden verbunden





Übersteuerungs - Kontrollgerät mit der EM 11

Isolations - Prüfgerät mit der EM 11

Die EM11 als Nullanzeiger in Brückenschaftungen mit Vorverstärkung, einfachere Ausführung

<u>Die EMfl als Nullanzeiger in Brückenschaltungen</u> mit Vorverstärkung und Gleichrichtung